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Abstract: The Yellow River Delta (YRD) in Shandong
Province, China, is a critical economic region that has
undergone substantial land use/land cover (LULC)
changes due to rapid development and populace growth
over recent decades. This study seeks to examine the
spatial variations in LULC changes and to identify the
factors that influence these transitions in the YRD. We
used the Random Forest (RF) cataloging approach on the
Google Earth Engine (GEE) framework, with Landsat
TM/OLI satellite images. Additionally, the driving
influences behind these changes were analyzed using the
Factor Indicator within the Geodetector framework,
offering insights into the key influences on LULC
dynamics. Our findings reveal significant variations in the
dominant land use categories in the YRD. Agricultural
land has decreased from 71.30% to 56.59%, while urban
land has expanded from 7.89% to 23.09%. The Factor
Detector analysis highlights population growth, Gross
Domestic Product (GDP), temperature, and rainfall as the
primary drivers behind these land use alterations. These
results provide essential data to guide environmental
protection efforts and support sustainable development in
the YRD, assisting local governments in balancing socio-
economic growth with ecological preservation.

Keywords: Land use Land Change (LULC); Google Earth
Engine (GEE); Landsat TM/OLI Data; Random Forest
(RF) Classification; Remote Sensing.

1. Introduction

Land serves as a critical foundation for human survival
and advancement, offering vital perspectives on the
interactions between human endeavors and ecological
dynamics. LULC, discernible through multi-temporal
observational data, indicates shifts in land utilization
strategies [1]. Since the onset of the 21st century, the study
of LULC changes has increasingly become a focal point in
global environmental change research. Initiatives
spearheaded by programs such as the Global Geosphere-
Biosphere Project (IGBP) and the Interagency Human
Determinants Project (IHDP) have positioned LULC
changes at the forefront of scientific inquiry in this domain
[2]. Amidst ongoing global socio-economic development,
these alterations in LULC are expected to exacerbate,

thereby exerting substantial pressures on ecosystem
structures, functions, and the delivery of ecosystem
services [3]. Thus, examining LULC changes provides an
essential methodical origin for fostering sustainable and
equitable progress among area economies and the natural
atmosphere.

Remote detecting knowledge delivers a highly effective
means for monitoring LULC, characterized by its
extensive reach, frequent updates, and rich data provision
[4]. This method has been the focus of numerous research
creativities. Notably, the Global Geosphere-Biosphere
Programme and the US Geological Inquiry have
collaboratively formed a comprehensive worldwide LULC
dataset, which offers a resolution of 1 km utilizing
Enhanced Extremely Superior Resolution Radiometer data.
In a specific study, Stefanski and colleagues employed
Landsat and ERS SAR imagery coupled with the Random
Forest method to delineate LULC in the west part of
Ukraine over the period from 1986 to 2010 [5]. Similarly,
Souza investigated the dynamics of LULC in Brazil
spanning from 1985 to 2017 through the analysis of
Landsat imagery. Furthermore, Abdullah utilized both
XGBoost and random forest algorithms to assess LULC
trends in coastal Bangladesh from 1990 to 2017 [6].
Collectively, these studies underscore the robust aptitudes
of remote sensing technologies in the extraction and
analysis of LULC data.

The swift progress in cloud storag and computing
technologies has facilitated the growth of remote-detecting
cloud stages that streamline the downloading and
dispensation of substantial datasets. GEE, a prominent
cloud-based platform, specializes in the analysis of
worldwide scale Earth opinion data. This platform
consolidates further than 200 datasets, including those
from Sentinel, Landsat, and MODIS, providing a
comprehensive resource for geospatial analysis. GEE
supports both JavaScript and Python environments,
empowering users to manage and process data on a
petabyte scale efficiently. By offering tools for querying,
visualization, preprocessing, and data extraction, GEE
markedly alleviates the operational burden on remote
sensing professionals.

Analyzing the driving influences of LULC change is
essential for optimizing models and improving LULC
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efficiency. Current methods of analysis are divided into
qualitative and quantitative approaches. Qualitative
methods identify the impacts of factors on LULC change
but cannot quantify their influence [7]. Conversely,
quantitative methods can measure these impacts but fail to
capture the spatial relationships between factors and
LULC changes, hindering a comprehensive empathetic of
the underlying mechanisms. The geographic indicator, a
statistical technique based on spatial distinction,
overcomes these limitations by quantifying the impact of
driving influences and analyzing their spatial interactions
[8]. This method has been effectively applied in LULC
research to investigate factors influencing specific changes,
such as urban expansion, and vegetation cover dynamics.

Amidst swift socio-economic growth and urban
expansion, coupled with natural sedimentation and uplift,
the YRD has emerged as one of China’s most vibrant
regions. Although some scholars have explored changes in
land cover within the YRD, contemporary research on this
topic remains scarce. Previous investigations have
predominantly concentrated on spatial analyses of rivers
and urban areas, offering a scant quantitative examination
of land use transformations across the region.

This manuscript seeks to examine changes in LULC
within the YRD by analyzing long-term trends. Employing
the GEE cloud stage coupled with the random forest
cataloging algorithm, this study extracted and assessed
LULC data from 2000, 2010, and 2020 for the YRD region.
The intensity of land use was quantitatively measured and
visually  depicted  through  grid-based  spatial
representations, facilitating an analysis of its sequential
and spatial fluctuations.

This paper comprehensively explores the spatial and
sequential dynamics of various land use categories, and
also analyzes the driving influences in the YRD, thereby
providing a theoretical basis and practical references for
the maintainable management of land capital and
environmental protection in the YRD.

2. Materials and methods

The section presents a concise overview of the
methodologies used to investigate LULC changes in our
study range. We begin by characterizing the study area’s
geographical, ecological, and socio-economic attributes.
The data preparation process is then explained, involving
careful handling of anthropogenic and natural datasets for
enhanced accuracy and relevance. We also detail the
creation of a multidimensional classification feature set
designed to categorize land use effectively and describe
the selection process for training and validation samples to
ensure typicality and statistical validity. Finally, we
explicate the methods used in the study, covering both the
analytical techniques and the statistical tools employed to
interpret the data.

2.1 Study Area

The YRD (117°31' - 119°18'E, 36°55' - 38°16'N),
positioned within the silty fan region designed by
sedimentary deposits from the Yellow River lower Lijin
County in Shandong Jurisdiction, extends over an area of
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roughly 6,783 square Kilometers. This delta is fan-shaped
with Lijin County at its apex; it is bounded by the Tuhai
River inlet to the north, the Xiaoging River to the south,
and encompasses Dongying City at its center. The
landscape of the delta is predominantly flat, characterized
by an average elevation below 10 meters. Situated in a
mid-latitude region within a warm temperate zone, the
delta is exposed to a warm temperate semi-humid
continental downpour climate, influenced by both the
Eurasian landmass and the Pacific Ocean. Figure 1
illustrates the geographical position of the research range.
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Figure 1. Map Depicting the Geographical Location of the
Research Area

2.2 Establishing Data

The primary sources of data for this study include
Landsat TM/OLI remote sensing imagery, essential
geographic information, and socio-financial data sets. In
the preprocessing phase, the study employs various
techniques such as clarifying, cloud covering, mosaicking,
and cropping on the Landsat TM/OLI data sets for the
YRD. These operations are executed using the JavaScript
Tender Programming Edge (API) on the framework of
GEE. Subsequently, heights, gradients, and aspect data are
derivative from the Digital Elevation Model (DEM).

Furthermore, various factors were identified to examine
the spatial discrepancy features of LULC changes within
the designated study zone, as detailed in Table 1.

Table 1. Influences of the LULC Type Changes

Influences type Index Code
. Population S1
Social Factor GDP 52
Temperature N1
Rain-fall N2
Elevation N3
Natural Factors Slope Na
Aspect N5
Soil N6

These factors include population, GDP, temperature,
precipitation, elevation, slope, aspect, and soil type. The
relevant data obtained from data center of the Chinese
Academy of Sciences and National Earth System Science
Data Center. The dataset is accessible online at the
following URLs: https://www.resdc.cn/,
http://www.geodata.cn/.

2.2.1 Building multidimensional cataloging feature set

Leveraging the capabilities of the GEE platform, this
research utilized the Landsat TM/OLI apparent reflectance
datasets for the selected study range across the years 2000,
2010, and 2020. However, the region’s complex climatic
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conditions rendered the production of a cloud-free
composite image from data collected in a single year
unfeasible, introducing certain analytical constraints. To
mitigate this, the study constructed a remote sensing image
dataset for each target year by amalgamating all accessible
images from the period of April to October. Thus,
enhancing the quality of the classification.

The study computed Indices such as’the Normalized
Difference Vegetation Index (NDVI) [9], Normalized
Difference Developed Index (NDBI) [10], Enhanced
Vegetation Index (EVI) [11], Normalized Difference
Water Index (NDWI) [12], and Modified Normalized
Difference Water Index (MNDWI) [13], and incorporated
additional geographic variables—elevation, slope, and
aspect—derivative from Digital Elevation Model (DEM)
data. This integration aimed to augment the accuracy of
classifications. Employing this methodology facilitated the
generation of a comprehensive, high-quality feature set,
which was effectively utilized for classification via the RF
algorithm.

2.2.2 Training and authentication sample assortment

The cataloging of LULC types within the research
location was derived from the existing LULC data, as well
as pertinent literature sources. Within the area under

investigation, LULC was branded into seven distinct types:

cropland, forest land, water, bare ground, and urban land
as revealed in Table 2.

When utilizing the RF algorithm for feature
classification, it is imperative to use high-quality training
and authentication samples. For this study, tasters from
three distinct periods were collected through visual
clarification of high-determination historical metaphors
sourced from Google Earth Pro. Specifically, the sample
sizes for the years 2000, 2010, and 2020 were 1470, 1451,
and 1401, respectively. Of these, 70% of the sample points
were allocated for training the classifiers, while the
remaining 30% were used as validation tasters to verify the
precision of the classifications.

Table 2. Land-use Categories Classified in the Study

LULC Type
Crop Land

Sub-type
Corn, wheat, rice, Mangroves, soy, fallow plots of]
structured land
Trees, clusters, plantations, grass fields, swamp

Forest Land

Water River, lake, reservoir, pond
Exposed rock or soil, coastal tidal flat, dried lake
Bare Land beds
Urban Land Construction, villages, cities, paved roads

2.2.3 Anthropogenetic and natural data

Our study used geo-detectors to assess the impact of
many variables inside the chosen study region in order to
look into the driving forces underlying changes in LULC.
Essential variables such as density of population, GDP,
altitude, aspect, climate, and rainfall were classified into
six discrete categories using the natural breakpoint
classification technique.

2.3 Methods

This work examines the taking out of LULC categories
and the underlying drivers of LULC transformation in the
YRD, utilizing multi-temporal Landsat sequence remote
detecting imagery processed on the framework of the GEE.
The methodological flow diagram is presented in Figure 2.
Initially, the Landsat TM/OLI data were preprocessed
through a series of steps, including information clarifying,
cloud covering, tapestrying, and extracting on the GEE
platform. Subsequently, the relevant property constraints
were computed to generate a multidimensional cataloging
property dataset. The RF procedure was then utilized to
catalogue the LULC, with the cataloging accuracy
assessed via a misperception matrix. Three distinct LULC
cataloging products for the study range were obtained for
the years 2000 to 2020. An allocation matrix was utilized
to examine the fluctuations over time in each category of
LULC. Lastly, the study investigated the LULC changes
from the dual viewpoints of natural and social influences,
employing earthly enquiries for driving force examination.
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2.3.1 Trimming and correction

The early phase intricates obtaining the Landsat
TM/OLI data for each year within the study area spanning
2000, 2010, and 2020. We utilized the GEE platform for
denoising and correcting the Landsat TM/OLI data for
each year. In accumulation, GEE raster cropping was
employed to eliminate any background noise.
Subsequently, we extracted the Landsat TM/OLI data
specific to YRD for each year by employing the YRD
managerial division map as a mask.

For the image cataloging method, we pragmatic a
Random forest-supervised tagging algorithm.

2.3.2 Random forest algorithm

The RF procedure was applied to the LULC tagging, a
combinatorial cataloging technique grounded on definite
deterioration trees introduced by [14]. The core concept of
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this procedure involves constructing an ensemble of
verdict tree classifiers. Each decision tree provides a
cataloging outcome, and the final cataloging is determined
through a majority elective mechanism, which mitigates
the risk of overfitting typically associated with individual
decision trees. Compared to other machine erudition
approaches, the RF algorithm demonstrates superior
heftiness and performs efficiently on huge datasets [15].
Several studies have explored the use of the RF procedure
for LULC cataloging on the GEE framework, yielding
notable results.

The LULC classification was conducted by straight
invoking the ee.smileRandomForest purpose within the
GEE API. This function requires the specification of two
limits: the amount of cataloging trees and the amount of
characteristics parameters used during node splitting.
Experimental results indicated that the classification
accuracy was optimized when the quantity of trees was set
to 500. Therefore, 500 trees were designated for the RF
cataloging. Additionally, the amount of property variables
was determined by calculating the square measure of the
total amount of traits intricate in the cataloging process
[16].

2.3.3 Evaluation

In this script, we employed a misperception matrix to
assess the precision of cataloging outcomes for features
within the study range. The precision of these cataloging
results is further characterized through the calculation of
overall precision, Kappa coefficient, fabricator’s precision,
and manipulator’s precision.

a. Overall precision

The overall precision indicates the algorithm’s efficacy
and is quantified as the ratio of properly classified tasters
to the total number of authentication tasters.

Poa = =TIy pii (1)

In Equation 1, Poa represents the general precision, N
signifies the entire numeral of tasters utilized for the
precision appraisal, n symbolizes the entire number of
classes, and pii indicates the count of correctly classified
instances for the iy, category in the muddle matrices.

b. The kappa coefficient

It quantifies the grade of a contract among observed
ground fact information and projected values, accounting
for agreement occurring by chance.

K= sz? pl;k_z;cl:1(2?=1:ki2}lpkj) @)
N —Zk=1(zi=1pki2j=1pkj)

In Equation 2, K signifies the kappa coefficient; n
signifies the total amount of groups; and pw signifies the
numeral of accurate groupings for the ki taster within the
misperception matrix. The terms Yi; py; and X7, py;
correspond to the taster size in the in and jw columns,
correspondingly. N signifies the entire numeral of tasters
utilized for precision assessment.

c. Producers precision

The drawing precision reflects the possibility that the
ground certainty orientation data, represented by
authentication samples, is accurately classified within the
intended category.
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Pkk (3)

i pkj

In Equation 3, Ppa represents the mapping precision, n
represents the entire numeral of classes, pw indicates the
count of correctly classified instances for the ki category
in the disarray matrix, and }.7_, py; signifies the taster size
in the ji section.

d. Users accuracy

User precision denotes the amount of accurately
categorized pixels within a designated class relative to the
entire pixel count in same group across the subsection.

_ _Pkk
PUA - E?:lpki (4)

In Equation 4, Pya represents user precision; n
represents the total amount of groups; pw signifies the
count of precise arrangements for the ki taster within the
misperception matrix; and Y., py; signifies the in line
taster size.

Ppy =

2.3.4 Land use degree indices

This study evaluates the catalogue of land use level
within the YRD by employing the complex land use
directory, which acts as a measure of the extent of human
activities on land. The extent of occupancy and growth
within the area fundamentally determines these indices. A
developed worth signifies a greater grade of occupancy,
reflecting further intricate social and financial events
within the range [17]. The computation of the land use
grade in the research range is as below:

lo, =100 x Y A; X C; (5)

The land use pattern index value is denoted as l,, where
A; represents the land use classifying catalog, and C;
corresponds to the proportion of the range classified under
the ix, land use degree. Based on appropriate revisions [18],
the land use categories were categorized into four separate
modules, each assigned a corresponding grading index, as
detailed in Table 3.

Table 3. Land Reserve use Categories and Rankings

Type of Land LULC Type Claigs??i)((:aot];on
Barren Bare Land (costal 1
Land tidal flat & deserts)
Natural Forest Land, Water 2
Land Body
Farming Land Crop Land 3
Construction Land Urban Land 4

2.3.5 Dominant factor detection

The Geodetector methodology evolved by combining
Geographic Information System (GIS) technology,
temporal overlay methods, and ensemble theory, based on
the principles of spatial variation [19]. This method offers
a novel approach to identifying the driving factors behind
spatial differentiation, addressing the limitations of
traditional ~ mathematical-statistical models, which
typically rely on numerous expectations and extensive data
necessities [20]. The Geographical Detector comprises
four distinct indicators: the influence indicator, interaction
indicator, peril indicator, and environmental indicator.
This script identifies the determinants of LULC variation
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within the study range, in accordance with the research's
objectives.

The influence indicator is primarily employed to assess
the spatial array of the depending variable and the
descriptive authority of the sovereign mutable about the
reliance on the mutable. This study quantifies the
descriptive authority of the impact of X; on the
geographically varied appearances of land use alteration
[21]. The explanatory power, denoted as g, can be stated
as:

yL_ Nyl
q=1-Zi=ln% (6)

Let L represent the variety of coats of the sovereign
mutable, N and Nh denote the number of tasters underneath
each respective coat and area, and o2 indicate the overall
variation of the taster.

3. Results

The upcoming sections of this article will delve into
various aspects of LULC analysis. Accuracy Valuation
will evaluate the precision of the land use data and its
reliability. LULC Structure Change will analyze the shifts
in land use patterns over time. Section Transition Area
Analysis of Land Use Type will explore areas where land
use types are transitioning, highlighting the factors
influencing these changes. Land Use Degree Changes will
examine the extent to which land use has transformed.
Lastly, Single Factor Detection Analysis will focus on
identifying and evaluating the impact of individual factors
contributing to land use changes.

3.1 Accuracy Valuation

The accuracy of cataloging outcomes is a crucial
component in LULC change examination. This study
premeditated the misperception matrix for the training
tasters and cataloging outcomes for each year using the
GEE framework. Table 1, Table 2, and Table 3, presented
the outcomes, show that the general classification
precision for 2000, 2010, and 2020 was 79.2%, 77.6%, and
78.5%, correspondingly, while the kappa coefficients for
these years were 0.79, 0.77, and 0.78, correspondingly.
The overall precision and kappa coefficient for cataloging
during the three stages exceeded 78%, with dissimilar
LULC categories demonstrating high cartographic
precision across the cataloging results for each date.
Therefore, it can be decided that the overall cataloging
precision met a satisfactory threshold, confirming that the
cataloging results are both precise and consistent. To
further evaluate the precision of the cataloging outcomes,
numerous segments of the classified grades within the
study range were randomly selected and subsequently
compared with data from Google Earth Pro. As illustrated
in Figure 2, the cataloging results presented in this study
demonstrated an improved ability to distinguish crop land,
forest land, water body, bare land, and urban land. These
classifications exhibited a strong resemblance with the
features observed in Google Earth Pro imagery. General,
the findings of this study confirm the accuracy and
reliability of the LULC classifications.
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Figure 2. Typical Image Subsections (A-C) with their Cataloging
Results

Table 1. The Results of Accuracy Assessment (2000)

2000
LULC Type PuaCh) | Ppa(h)
Crop Land 79.1 78.6
Forest Land 80.2 79.3
Water 78.7 70.1
Bare Land 73.1 72.4
Urban Land 70.5 79.2
Kappa Coefficient 0.79
Table 2. The Results of Accuracy Assessment (2010)
2010
LULC Type Pya(%) Ppy (%0)
Crop Land 81.3 79.3
Forest Land 78.4 80.2
Water 80.3 714
Bare Land 75.5 73.7
Urban Land 72.3 71.2
Poa(%) 77.6
Kappa Coefficient 0.77
Table 3. The Results of Accuracy Assessment (2020)
2020
LULC Type Pya(%) Ppy (%)
Crop Land 80.0 79.2
Forest Land 79.2 78.1
Water 72.4 73.3
Bare Land 73.2 75.5
Urban Land 77.1 78.1
Poa(%) 785
Kappa Coefficient 0.78

3.2 Change in LULC Structure

The geographical dispersal of LUCC in the YRD in the
years 2000, 2010, and 2020 is presented in Figure 4 and
Figure 5.
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Figure 5. Area Changes of LULC Categories, (a) Crop Land; (b)
Forest Land; (c) Water Body; (d) Bare Land; (e) Urban Land

As depicted, crops dominate the LULC categories
within the study range, covering over 2004.95 km=n 2000,
1879.05 km=in 2010, and 1583.34 km=in 2020, which
shows that the crops land decreased rapidly in the YRD
from 2000 to 2020. The area of forested land has also
shown a gradual decrease from 62.75 km=in 2000, 61.79
in 2010, and 11.61 in 2020, which proves that the forest
land faced a massive decrease from 2010 to 2020. The
extent of bare ground has decreased, as built-up cover has
expanded through both natural regeneration and human-
driven efforts. Urbanization has accelerated significantly,
with the built-up area expanding rapidly due to industrial
development and infrastructure projects in coastal regions.
Urban sprawl has grown from 221.96 km=in 2000, 264.04
km=in 2010 to 646.18 km=in 2020, particularly around
industrial zones, ports, and transportation hubs, resulting
in the alteration of agricultural and natural land into
urbanized areas. Table 7 provides a numerical depiction of
the area of various types of LULC.

Table 7. Area of Various Types

Years 2000 2010 2020
Cr{’,ﬁrh%”d 2004.8 1879.0 15833
For(t:ﬁn';)a”d 62.7 61.79 116
Wa(tleirm I32§de 91.1 209.5 458.4
Bftr;rhf)”d 4309 397.4 98.1
Urkzinml;)aﬂd 221.9 264.0 646.1

3.3 Change Area Analysis of Land Use Type

To accurately and intuitively illustrate the quantifiable
structural features and the change relationships among
diverse LULC categories, we computed the LULC transfer
matrix for the YRD. This matrix quantitatively delineates
the mutual changes among various LULC types within the
region. The total transfer matrices for LULC types from
2000 to 2010 and from 2010 to 2020 are shown in Table 8
and Table 9. In overall, the areas of urban land and water
bodies in the research range have pointedly improved,
while the ranges of cropland, forest land, and bare land
have reduced.
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Table 8. Transition Matrix of LULC (2000-2010)

Total Area Total Area
LULC Type in 2000 in 2010
Crop Land (Km?) 2004.8 1879.0
Forest Land (Km?) 62.7 61.7
Water (Km?) 91.1 209.5
Bare Land (Km?) 430.9 397.4
Urban Land (Km?) 221.96 264.04

Table 4. Transition Matrix of LULC (2010-2020)

Total Area Total Area
LULC Type in 2010 in 2020
Crop Land (Km?) 1879.0 1583.3
Forest Land (Km?) 61.7 11.6
Water (Km?) 209.5 458.4
Bare Land (Km?) 397.4 98.1
Urban Land (Km?) 264.0 646.1

Regarding the major land use/land cover (LULC)
transitions, the evolution of urban land mostly happened at
the expenditure of cropland, whereas the reduction in bare
land primarily transitioned to water bodies and urban land.
Between 2010 and 2020, the urban land and water bodies
continued to expand, while bare land and forest land
exhibited a decline. The decrease in bare land was mainly
converted into urban land, with a smaller proportion
transforming into cropland and water bodies. Additionally,
some water bodies were converted into cropland, bare land,
and urban land. A comparison of LULC changes from
2000 to 2010 and from 2010 to 2020 reveals that, while the
total areas of all LULC types experienced only slight
changes during the first phase, a more rapid transformation
occurred in the second phase. We concluded, that from
2000 to 2020, the entire areas of urban land and water
bodies progressively increased, whereas the total areas of
cropland, forest land, and bare land declined significantly
over the past two decades.

3.4 Evolution of Land-Use Degree

The rate of land use serves as an effective indicator of
the extent and intensity of land utilization and growth.
Utilizing the LULC information for the YRD, our research
assesses various land categories and systematically
calculates the evolution of land-use levels to quantify the
general amount of land use (2000 — 2020). Figure 6,
depicted the spatial dispersal of the evolution of land-use
levels. The Land-use levels in the YRD (2000-2020)
measures the intensity of human influence on land use
patterns.
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Figure 6. Spatial Dispersal Maps of Evolution of Land-use
Degree in the YRD. (a). 2000-2010; (b). 2010-2020

From 2000 to 2010 moderate land use intensity across
much of the delta. This could be areas of mixed
agricultural activity, perhaps interspersed with small
settlements or less intensive industrial activities, while
from 2010 to 2020 there's a noticeable increase in land
degree change, especially along the southern coastline and
the eastern part of the YRD suggesting an increase in high-
intensity land use such as urban expansion or industrial
development. Using LULC data, the index captures the
spatial dispersal of land use, from natural ecosystems to
urbanized and industrial areas. Over the study period,
noteworthy land use shifts occurred, from 2000 to 2010
there was ambitious by development, and infrastructure
development. Notably, there was a rise in construction
land like built-up areas and also in ecological land like
water-bodies, while natural environments, such as
agricultural lands and bare lands faced varying levels of
degradation. This analysis provides valuable insights into
the region’s socio-economic and ecological dynamics,
aiding in the development of sustainable land management
strategies.

3.5 Influence Analysis of Detection Factors

The influence detector is utilized to evaluate the
descriptive authority of numerous aspects influencing the
geographical diversity of land-use strength within the
research range. The outcomes are presented in Table 10,
Table 11 and Table 12. The values of p for all discovery
influences were zero, indicating the nominated influences
exert a statistically noteworthy influence on the
geographical variation of land-use strength. As a result,
these factors can be regarded as key determinants in
analyzing spatial diversity. The g-values further illustrate
that higher -values are associated with greater
explanatory supremacy of each influence concerning
spatial distinction of land-use strength. This suggests that
factors with higher g-values have a more substantial
influence on land-use strength patterns. As shown in Table
10, Table 11, and Table 12, the g-values for soil type,
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aspect, and elevation exhibited a gradual decline from
2000 to 2020, indicating a weakening influence of these
factors over time. In disparity, the g-values for GDP, and
population showed a significant increase, with relatively
smaller changes observed for other factors. Overall, the g-
values for GDP, populace, temperature, and rainfall were
notably higher, signifying that these factors have a strong
explanatory power regarding LULC changes in the YRD.
These factors are thus identified as the primary drivers of
LULC variation in the district. In distinction, the q values
of aspect and soil types were continually minor than 0.1,
demonstrating that they have slight impression on LULC
alteration in the YRD. In summary, the analysis reveals
that population, GDP, temperature, and precipitation are
the main drivers of land-use variation in the YRD, with
elevation, slope, aspect, and soil playing more localized
and secondary roles in shaping the region's land-use
dynamics. The Geographic Detector’s findings suggest
that socio-economic factors, particularly population
density and economic development, have become
increasingly ~ dominant  in  influencing  spatial
differentiation in land-use strength over the past two eras.

Table 10. The Values of Impact Factors Influencing Land-use
Degree in (2000)

Influence Factors 2000
q p Sequence
S1 0.252 0 4
S2 0.267 0 3
N1 0.290 0 2
N2 0.305 0 1
N3 0.148 0 5
N4 0.147 0 6
N5 0.015 0 8
N6 0.081 0 7

Table 11. The Values of Impact Factors Influencing Land-use
Degree in (2010)

Influence Factors 2010
q p Sequence
Sl 0.442 0 1
S2 0.438 0 2
N1 0.240 0 3
N2 0.193 0 4
N3 0.104 0 5
N4 0.103 0 6
N5 0.012 0 8
N6 0.038 0 7

Table 12. The Values of Impact Factors Influencing Land-use
Degree in (2020)

Influence Factors| 2020
q p Sequence
S1 0.401 0 2
S2 0.416 0 1
N1 0.179 0 4
N2 0.180 0 3
N3 0.058 0 6
N4 0.059 0 5
N5 0.018 0 8
N6 0.041 0 7
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4. Conclusion

This study, utilizing the GEE cloud framework, applied
the RF technique to catalogue land use in the YRD and
generated multi-temporal land use dispersal maps for the
study area. A transfer matrix was then computed to assess
land use variations, followed by the Geodetector method
to investigate the potential driving mechanisms behind the
LULC intensity in the region. The outcomes reveal that
from 2000 to 2020, the dominant land use kinds in the
YRD were built-up land, followed by cropland, water
bodies, bare land, and forest land. Notably, cropland, forest
land, and bare land experienced degradation, while urban
land and water bodies expanded. Land use transition
analysis showed that cropland and bare land were
predominantly converted into urban land and water bodies.
In terms of land use strength, high-intensity land use areas
were mainly rigorous in the plains, with cropland and
urban land being the primary land types. Furthermore, a
single-factor detector analysis identified population
growth, GDP, temperature, and precipitation as the
primary factors driving land use variation. By examining
the patterns of land use alteration and its influencing forces
in the YRD, this study contributes to a deeper sympathetic

of the district's land use dynamics and internal mechanisms.

The findings provide valuable data for ecological
governance and assist local governments in implementing
strategies for rational regional preparation, as well as the
synchronized, bearable growth of the social economy and
atmosphere.
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