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Abstract: The Yellow River Delta (YRD) in Shandong 

Province, China, is a critical economic region that has 

undergone substantial land use/land cover (LULC) 

changes due to rapid development and populace growth 

over recent decades. This study seeks to examine the 

spatial variations in LULC changes and to identify the 

factors that influence these transitions in the YRD. We 

used the Random Forest (RF) cataloging approach on the 

Google Earth Engine (GEE) framework, with Landsat 

TM/OLI satellite images. Additionally, the driving 

influences behind these changes were analyzed using the 

Factor Indicator within the Geodetector framework, 

offering insights into the key influences on LULC 

dynamics. Our findings reveal significant variations in the 

dominant land use categories in the YRD. Agricultural 

land has decreased from 71.30% to 56.59%, while urban 

land has expanded from 7.89% to 23.09%. The Factor 

Detector analysis highlights population growth, Gross 

Domestic Product (GDP), temperature, and rainfall as the 

primary drivers behind these land use alterations. These 

results provide essential data to guide environmental 

protection efforts and support sustainable development in 

the YRD, assisting local governments in balancing socio-

economic growth with ecological preservation. 
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1. Introduction 

Land serves as a critical foundation for human survival 

and advancement, offering vital perspectives on the 

interactions between human endeavors and ecological 

dynamics. LULC, discernible through multi-temporal 

observational data, indicates shifts in land utilization 

strategies [1]. Since the onset of the 21st century, the study 

of LULC changes has increasingly become a focal point in 

global environmental change research. Initiatives 

spearheaded by programs such as the Global Geosphere-

Biosphere Project (IGBP) and the Interagency Human 

Determinants Project (IHDP) have positioned LULC 

changes at the forefront of scientific inquiry in this domain 

[2]. Amidst ongoing global socio-economic development, 

these alterations in LULC are expected to exacerbate, 

thereby exerting substantial pressures on ecosystem 

structures, functions, and the delivery of ecosystem 

services [3]. Thus, examining LULC changes provides an 

essential methodical origin for fostering sustainable and 

equitable progress among area economies and the natural 

atmosphere. 

Remote detecting knowledge delivers a highly effective 

means for monitoring LULC, characterized by its 

extensive reach, frequent updates, and rich data provision 

[4]. This method has been the focus of numerous research 

creativities. Notably, the Global Geosphere-Biosphere 

Programme and the US Geological Inquiry have 

collaboratively formed a comprehensive worldwide LULC 

dataset, which offers a resolution of 1 km utilizing 

Enhanced Extremely Superior Resolution Radiometer data. 

In a specific study, Stefanski and colleagues employed 

Landsat and ERS SAR imagery coupled with the Random 

Forest method to delineate LULC in the west part of 

Ukraine over the period from 1986 to 2010 [5]. Similarly, 

Souza investigated the dynamics of LULC in Brazil 

spanning from 1985 to 2017 through the analysis of 

Landsat imagery. Furthermore, Abdullah utilized both 

XGBoost and random forest algorithms to assess LULC 

trends in coastal Bangladesh from 1990 to 2017 [6]. 

Collectively, these studies underscore the robust aptitudes 

of remote sensing technologies in the extraction and 

analysis of LULC data. 

The swift progress in cloud storag and computing 

technologies has facilitated the growth of remote-detecting 

cloud stages that streamline the downloading and 

dispensation of substantial datasets. GEE, a prominent 

cloud-based platform, specializes in the analysis of 

worldwide scale Earth opinion data. This platform 

consolidates further than 200 datasets, including those 

from Sentinel, Landsat, and MODIS, providing a 

comprehensive resource for geospatial analysis. GEE 

supports both JavaScript and Python environments, 

empowering users to manage and process data on a 

petabyte scale efficiently. By offering tools for querying, 

visualization, preprocessing, and data extraction, GEE 

markedly alleviates the operational burden on remote 

sensing professionals. 

Analyzing the driving influences of LULC change is 

essential for optimizing models and improving LULC 
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efficiency. Current methods of analysis are divided into 

qualitative and quantitative approaches. Qualitative 

methods identify the impacts of factors on LULC change 

but cannot quantify their influence [7]. Conversely, 

quantitative methods can measure these impacts but fail to 

capture the spatial relationships between factors and 

LULC changes, hindering a comprehensive empathetic of 

the underlying mechanisms. The geographic indicator, a 

statistical technique based on spatial distinction, 

overcomes these limitations by quantifying the impact of 

driving influences and analyzing their spatial interactions 

[8]. This method has been effectively applied in LULC 

research to investigate factors influencing specific changes, 

such as urban expansion, and vegetation cover dynamics. 

Amidst swift socio-economic growth and urban 

expansion, coupled with natural sedimentation and uplift, 

the YRD has emerged as one of China’s most vibrant 

regions. Although some scholars have explored changes in 

land cover within the YRD, contemporary research on this 

topic remains scarce. Previous investigations have 

predominantly concentrated on spatial analyses of rivers 

and urban areas, offering a scant quantitative examination 

of land use transformations across the region. 

This manuscript seeks to examine changes in LULC 

within the YRD by analyzing long-term trends. Employing 

the GEE cloud stage coupled with the random forest 

cataloging algorithm, this study extracted and assessed 

LULC data from 2000, 2010, and 2020 for the YRD region. 

The intensity of land use was quantitatively measured and 

visually depicted through grid-based spatial 

representations, facilitating an analysis of its sequential 

and spatial fluctuations. 

 This paper comprehensively explores the spatial and 

sequential dynamics of various land use categories, and 

also analyzes the driving influences in the YRD, thereby 

providing a theoretical basis and practical references for 

the maintainable management of land capital and 

environmental protection in the YRD. 

2. Materials and methods 

The section presents a concise overview of the 

methodologies used to investigate LULC changes in our 

study range. We begin by characterizing the study area's 

geographical, ecological, and socio-economic attributes. 

The data preparation process is then explained, involving 

careful handling of anthropogenic and natural datasets for 

enhanced accuracy and relevance. We also detail the 

creation of a multidimensional classification feature set 

designed to categorize land use effectively and describe 

the selection process for training and validation samples to 

ensure typicality and statistical validity. Finally, we 

explicate the methods used in the study, covering both the 

analytical techniques and the statistical tools employed to 

interpret the data. 

2.1 Study Area 

The YRD (117˚31' - 119˚18'E, 36˚55' - 38˚16'N), 

positioned within the silty fan region designed by 

sedimentary deposits from the Yellow River lower Lijin 

County in Shandong Jurisdiction, extends over an area of 

roughly 6,783 square kilometers. This delta is fan-shaped 

with Lijin County at its apex; it is bounded by the Tuhai 

River inlet to the north, the Xiaoqing River to the south, 

and encompasses Dongying City at its center. The 

landscape of the delta is predominantly flat, characterized 

by an average elevation below 10 meters. Situated in a 

mid-latitude region within a warm temperate zone, the 

delta is exposed to a warm temperate semi-humid 

continental downpour climate, influenced by both the 

Eurasian landmass and the Pacific Ocean. Figure 1 

illustrates the geographical position of the research range. 

 
Figure 1. Map Depicting the Geographical Location of the 

Research Area 

2.2 Establishing Data 

The primary sources of data for this study include 

Landsat TM/OLI remote sensing imagery, essential 

geographic information, and socio-financial data sets. In 

the preprocessing phase, the study employs various 

techniques such as clarifying, cloud covering, mosaicking, 

and cropping on the Landsat TM/OLI data sets for the 

YRD. These operations are executed using the JavaScript 

Tender Programming Edge (API) on the framework of 

GEE. Subsequently, heights, gradients, and aspect data are 

derivative from the Digital Elevation Model (DEM). 

Furthermore, various factors were identified to examine 

the spatial discrepancy features of LULC changes within 

the designated study zone, as detailed in Table 1.  

Table 1. Influences of the LULC Type Changes 

Influences type Index Code 

Social Factor 
Population S1 

GDP S2 

Natural Factors 

Temperature N1 

Rain-fall N2 

Elevation N3 

Slope N4 

Aspect N5 

Soil N6 

These factors include population, GDP, temperature, 

precipitation, elevation, slope, aspect, and soil type. The 

relevant data obtained from data center of the Chinese 

Academy of Sciences and National Earth System Science 

Data Center. The dataset is accessible online at the 

following URLs: https://www.resdc.cn/, 

http://www.geodata.cn/. 

2.2.1 Building multidimensional cataloging feature set 

Leveraging the capabilities of the GEE platform, this 

research utilized the Landsat TM/OLI apparent reflectance 

datasets for the selected study range across the years 2000, 

2010, and 2020. However, the region’s complex climatic 

https://www.resdc.cn/
http://www.geodata.cn/
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conditions rendered the production of a cloud-free 

composite image from data collected in a single year 

unfeasible, introducing certain analytical constraints. To 

mitigate this, the study constructed a remote sensing image 

dataset for each target year by amalgamating all accessible 

images from the period of April to October. Thus, 

enhancing the quality of the classification. 

The study computed Indices such as”the Normalized 

Difference Vegetation Index (NDVI) [9], Normalized 

Difference Developed Index (NDBI) [10], Enhanced 

Vegetation Index (EVI) [11], Normalized Difference 

Water Index (NDWI) [12], and Modified Normalized 

Difference Water Index (MNDWI) [13], and incorporated 

additional geographic variables—elevation, slope, and 

aspect—derivative from Digital Elevation Model (DEM) 

data. This integration aimed to augment the accuracy of 

classifications. Employing this methodology facilitated the 

generation of a comprehensive, high-quality feature set, 

which was effectively utilized for classification via the RF 

algorithm. 

2.2.2 Training and authentication sample assortment 

The cataloging of LULC types within the research 

location was derived from the existing LULC data, as well 

as pertinent literature sources. Within the area under 

investigation, LULC was branded into seven distinct types: 

cropland, forest land, water, bare ground, and urban land 

as revealed in Table 2. 

When utilizing the RF algorithm for feature 

classification, it is imperative to use high-quality training 

and authentication samples. For this study, tasters from 

three distinct periods were collected through visual 

clarification of high-determination historical metaphors 

sourced from Google Earth Pro. Specifically, the sample 

sizes for the years 2000, 2010, and 2020 were 1470, 1451, 

and 1401, respectively. Of these, 70% of the sample points 

were allocated for training the classifiers, while the 

remaining 30% were used as validation tasters to verify the 

precision of the classifications. 

Table 2. Land-use Categories Classified in the Study 

LULC Type Sub-type 

Crop Land 
Corn, wheat, rice, Mangroves, soy, fallow plots of 

structured land 

Forest Land Trees, clusters, plantations, grass fields, swamp 

Water River, lake, reservoir, pond 

Bare Land 
Exposed rock or soil, coastal tidal flat, dried lake 

beds 

Urban Land Construction, villages, cities, paved roads 

2.2.3 Anthropogenetic and natural data 

Our study used geo-detectors to assess the impact of 

many variables inside the chosen study region in order to 

look into the driving forces underlying changes in LULC. 

Essential variables such as density of population, GDP, 

altitude, aspect, climate, and rainfall were classified into 

six discrete categories using the natural breakpoint 

classification technique. 

 

 

2.3 Methods 

This work examines the taking out of LULC categories 

and the underlying drivers of LULC transformation in the 

YRD, utilizing multi-temporal Landsat sequence remote 

detecting imagery processed on the framework of the GEE. 

The methodological flow diagram is presented in Figure 2. 

Initially, the Landsat TM/OLI data were preprocessed 

through a series of steps, including information clarifying, 

cloud covering, tapestrying, and extracting on the GEE 

platform. Subsequently, the relevant property constraints 

were computed to generate a multidimensional cataloging 

property dataset. The RF procedure was then utilized to 

catalogue the LULC, with the cataloging accuracy 

assessed via a misperception matrix. Three distinct LULC 

cataloging products for the study range were obtained for 

the years 2000 to 2020. An allocation matrix was utilized 

to examine the fluctuations over time in each category of 

LULC. Lastly, the study investigated the LULC changes 

from the dual viewpoints of natural and social influences, 

employing earthly enquiries for driving force examination. 

 
Figure 2. Flow Illustration of the Proposed Methodology 

2.3.1 Trimming and correction 

The early phase intricates obtaining the Landsat 

TM/OLI data for each year within the study area spanning 

2000, 2010, and 2020. We utilized the GEE platform for 

denoising and correcting the Landsat TM/OLI data for 

each year. In accumulation, GEE raster cropping was 

employed to eliminate any background noise. 

Subsequently, we extracted the Landsat TM/OLI data 

specific to YRD for each year by employing the YRD 

managerial division map as a mask. 

For the image cataloging method, we pragmatic a 

Random forest-supervised tagging algorithm. 

2.3.2 Random forest algorithm 

The RF procedure was applied to the LULC tagging, a 

combinatorial cataloging technique grounded on definite 

deterioration trees introduced by [14]. The core concept of 
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this procedure involves constructing an ensemble of 

verdict tree classifiers. Each decision tree provides a 

cataloging outcome, and the final cataloging is determined 

through a majority elective mechanism, which mitigates 

the risk of overfitting typically associated with individual 

decision trees. Compared to other machine erudition 

approaches, the RF algorithm demonstrates superior 

heftiness and performs efficiently on huge datasets [15]. 

Several studies have explored the use of the RF procedure 

for LULC cataloging on the GEE framework, yielding 

notable results. 

The LULC classification was conducted by straight 

invoking the ee.smileRandomForest purpose within the 

GEE API. This function requires the specification of two 

limits: the amount of cataloging trees and the amount of 

characteristics parameters used during node splitting. 

Experimental results indicated that the classification 

accuracy was optimized when the quantity of trees was set 

to 500. Therefore, 500 trees were designated for the RF 

cataloging. Additionally, the amount of property variables 

was determined by calculating the square measure of the 

total amount of traits intricate in the cataloging process 

[16]. 

2.3.3 Evaluation 

In this script, we employed a misperception matrix to 

assess the precision of cataloging outcomes for features 

within the study range. The precision of these cataloging 

results is further characterized through the calculation of 

overall precision, Kappa coefficient, fabricator’s precision, 

and manipulator’s precision. 

a. Overall precision 

The overall precision indicates the algorithm’s efficacy 

and is quantified as the ratio of properly classified tasters 

to the total number of authentication tasters. 

𝑃𝑂𝐴 =
1

𝑁
∑ 𝜌𝑖𝑖𝑛

𝑖=1                           (1) 

In Equation 1, POA represents the general precision, N 

signifies the entire numeral of tasters utilized for the 

precision appraisal, n symbolizes the entire number of 

classes, and pii indicates the count of correctly classified 

instances for the ith category in the muddle matrices. 

b. The kappa coefficient  

It quantifies the grade of a contract among observed 

ground fact information and projected values, accounting 

for agreement occurring by chance. 

𝐾 =
𝑁 ∑ 𝑝𝑘𝑘−∑ (∑ 𝑝𝑘𝑖 ∑ 𝑝𝑘𝑗

𝑛
𝑗

𝑛
𝑖=1 )𝑛

𝑘=1
𝑛
𝑘=1

𝑁2−∑ (∑ 𝑝𝑘𝑖 ∑ 𝑝𝑘𝑗
𝑛
𝑗=1

𝑛
𝑖=1 )𝑛

𝑘=1
           (2) 

In Equation 2, K signifies the kappa coefficient; n 

signifies the total amount of groups; and pkk signifies the 

numeral of accurate groupings for the kth taster within the 

misperception matrix. The terms ∑ 𝑝𝑘𝑖
𝑛
𝑖=1  and ∑ 𝑝𝑘𝑗

𝑛
𝑗=1  

correspond to the taster size in the ith and jth columns, 

correspondingly. N signifies the entire numeral of tasters 

utilized for precision assessment. 

c. Producers precision 

The drawing precision reflects the possibility that the 

ground certainty orientation data, represented by 

authentication samples, is accurately classified within the 

intended category. 

𝑃𝑃𝐴 =
𝑝𝑘𝑘

∑ 𝑝𝑘𝑗
𝑛
𝑗=1

                                 (3) 

In Equation 3, PPA represents the mapping precision, n 

represents the entire numeral of classes, pkk indicates the 

count of correctly classified instances for the kth category 

in the disarray matrix, and ∑ 𝑝𝑘𝑗
𝑛
𝑗=1  signifies the taster size 

in the jth section. 

d. Users accuracy 

User precision denotes the amount of accurately 

categorized pixels within a designated class relative to the 

entire pixel count in same group across the subsection. 

𝑃𝑈𝐴 =
𝑝𝑘𝑘

∑ 𝑝𝑘𝑖
𝑛
𝑖=1

                                (4) 

In Equation 4, PUA represents user precision; n 

represents the total amount of groups; pkk signifies the 

count of precise arrangements for the kth taster within the 

misperception matrix; and ∑ 𝑝𝑘𝑖
𝑛
𝑖=1  signifies the ith line 

taster size. 

2.3.4 Land use degree indices 

This study evaluates the catalogue of land use level 

within the YRD by employing the complex land use 

directory, which acts as a measure of the extent of human 

activities on land. The extent of occupancy and growth 

within the area fundamentally determines these indices. A 

developed worth signifies a greater grade of occupancy, 

reflecting further intricate social and financial events 

within the range [17]. The computation of the land use 

grade in the research range is as below: 

𝑙𝑎 = 100 × ∑ 𝐴𝑖
𝑛
𝑖=1 × 𝐶𝑖                   (5) 

The land use pattern index value is denoted as la, where 

Ai represents the land use classifying catalog, and Ci 

corresponds to the proportion of the range classified under 

the ith land use degree. Based on appropriate revisions [18], 

the land use categories were categorized into four separate 

modules, each assigned a corresponding grading index, as 

detailed in Table 3. 

Table 3. Land Reserve use Categories and Rankings 

Type of Land LULC Type 
Index of 

Classification 

Barren 

Land 

Bare Land (costal 

tidal flat & deserts) 
1 

Natural 

Land 

Forest Land, Water 

Body 
2 

Farming Land Crop Land 3 

Construction Land Urban Land 4 

2.3.5 Dominant factor detection 

The Geodetector methodology evolved by combining 

Geographic Information System (GIS) technology, 

temporal overlay methods, and ensemble theory, based on 

the principles of spatial variation [19]. This method offers 

a novel approach to identifying the driving factors behind 

spatial differentiation, addressing the limitations of 

traditional mathematical-statistical models, which 

typically rely on numerous expectations and extensive data 

necessities [20]. The Geographical Detector comprises 

four distinct indicators: the influence indicator, interaction 

indicator, peril indicator, and environmental indicator. 

This script identifies the determinants of LULC variation 
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within the study range, in accordance with the research's 

objectives. 

The influence indicator is primarily employed to assess 

the spatial array of the depending variable and the 

descriptive authority of the sovereign mutable about the 

reliance on the mutable. This study quantifies the 

descriptive authority of the impact of Xi on the 

geographically varied appearances of land use alteration 

[21]. The explanatory power, denoted as q, can be stated 

as: 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2                             (6) 

Let L represent the variety of coats of the sovereign 

mutable, N and Nh denote the number of tasters underneath 

each respective coat and area, and 𝜎2 indicate the overall 

variation of the taster. 

3. Results 

The upcoming sections of this article will delve into 

various aspects of LULC analysis. Accuracy Valuation 

will evaluate the precision of the land use data and its 

reliability. LULC Structure Change will analyze the shifts 

in land use patterns over time. Section Transition Area 

Analysis of Land Use Type will explore areas where land 

use types are transitioning, highlighting the factors 

influencing these changes. Land Use Degree Changes will 

examine the extent to which land use has transformed. 

Lastly, Single Factor Detection Analysis will focus on 

identifying and evaluating the impact of individual factors 

contributing to land use changes. 

3.1 Accuracy Valuation 

The accuracy of cataloging outcomes is a crucial 

component in LULC change examination. This study 

premeditated the misperception matrix for the training 

tasters and cataloging outcomes for each year using the 

GEE framework. Table 1, Table 2, and Table 3, presented 

the outcomes, show that the general classification 

precision for 2000, 2010, and 2020 was 79.2%, 77.6%, and 

78.5%, correspondingly, while the kappa coefficients for 

these years were 0.79, 0.77, and 0.78, correspondingly. 

The overall precision and kappa coefficient for cataloging 

during the three stages exceeded 78%, with dissimilar 

LULC categories demonstrating high cartographic 

precision across the cataloging results for each date. 

Therefore, it can be decided that the overall cataloging 

precision met a satisfactory threshold, confirming that the 

cataloging results are both precise and consistent. To 

further evaluate the precision of the cataloging outcomes, 

numerous segments of the classified grades within the 

study range were randomly selected and subsequently 

compared with data from Google Earth Pro. As illustrated 

in Figure 2, the cataloging results presented in this study 

demonstrated an improved ability to distinguish crop land, 

forest land, water body, bare land, and urban land. These 

classifications exhibited a strong resemblance with the 

features observed in Google Earth Pro imagery. General, 

the findings of this study confirm the accuracy and 

reliability of the LULC classifications. 

 
Figure 2. Typical Image Subsections (A-C) with their Cataloging 

Results 

Table 1. The Results of Accuracy Assessment (2000) 

LULC Type 
2000 

𝑷𝑼𝑨(%) 𝑷𝑷𝑨 (%) 

Crop Land 79.1 78.6 

Forest Land 80.2 79.3 

Water 78.7 70.1 

Bare Land 73.1 72.4 

Urban Land 70.5 79.2 

𝑃𝑂𝐴(%) 79.2 

Kappa Coefficient 0.79 

Table 2. The Results of Accuracy Assessment (2010) 

LULC Type 
2010 

𝑷𝑼𝑨(%) 𝑷𝑷𝑨 (%) 

Crop Land 81.3 79.3 

Forest Land 78.4 80.2 

Water 80.3 71.4 

Bare Land 75.5 73.7 

Urban Land 72.3 71.2 

𝑃𝑂𝐴(%) 77.6 

Kappa Coefficient 0.77 

Table 3. The Results of Accuracy Assessment (2020) 

LULC Type 
2020 

𝑷𝑼𝑨(%) 𝑷𝑷𝑨 (%) 

Crop Land 80.0 79.2 

Forest Land 79.2 78.1 

Water 72.4 73.3 

Bare Land 73.2 75.5 

Urban Land 77.1 78.1 

𝑃𝑂𝐴(%) 78.5 

Kappa Coefficient 0.78 

3.2 Change in LULC Structure 

The geographical dispersal of LUCC in the YRD in the 

years 2000, 2010, and 2020 is presented in Figure 4 and 

Figure 5.  
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(a). 2000 

 
(b). 2010 

 
(c). 2020 

 
Figure 4. Geographical Dispensation Map of LULC in the YRD, 

(a) 2000; (b) 2010; (c) 2020 

 
(a). Crop Land 

 
(b). Forest Land 

 
(c). Water Body 

 
(d). Bare Land 
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(e). Urban Land 

Figure 5. Area Changes of LULC Categories, (a) Crop Land; (b) 

Forest Land; (c) Water Body; (d) Bare Land; (e) Urban Land 

As depicted, crops dominate the LULC categories 

within the study range, covering over 2004.95 km² in 2000, 

1879.05 km² in 2010, and 1583.34 km² in 2020, which 

shows that the crops land decreased rapidly in the YRD 

from 2000 to 2020. The area of forested land has also 

shown a gradual decrease from 62.75 km² in 2000, 61.79 

in 2010, and 11.61 in 2020, which proves that the forest 

land faced a massive decrease from 2010 to 2020. The 

extent of bare ground has decreased, as built-up cover has 

expanded through both natural regeneration and human-

driven efforts. Urbanization has accelerated significantly, 

with the built-up area expanding rapidly due to industrial 

development and infrastructure projects in coastal regions. 

Urban sprawl has grown from 221.96 km² in 2000, 264.04 

km² in 2010 to 646.18 km² in 2020, particularly around 

industrial zones, ports, and transportation hubs, resulting 

in the alteration of agricultural and natural land into 

urbanized areas. Table 7 provides a numerical depiction of 

the area of various types of LULC. 

Table 7. Area of Various Types 

Years 2000 2010 2020 

Crop Land 

(Km2) 
2004.8 1879.0 1583.3 

Forest Land 

(Km2) 
62.7 61.79 11.6 

Water Body 

(Km2) 
91.1 209.5 458.4 

Bare Land 

(Km2) 
430.9 397.4 98.1 

Urban Land 

(Km2) 
221.9 264.0 646.1 

3.3 Change Area Analysis of Land Use Type 

To accurately and intuitively illustrate the quantifiable 

structural features and the change relationships among 

diverse LULC categories, we computed the LULC transfer 

matrix for the YRD. This matrix quantitatively delineates 

the mutual changes among various LULC types within the 

region. The total transfer matrices for LULC types from 

2000 to 2010 and from 2010 to 2020 are shown in Table 8 

and Table 9. In overall, the areas of urban land and water 

bodies in the research range have pointedly improved, 

while the ranges of cropland, forest land, and bare land 

have reduced. 

 

Table 8. Transition Matrix of LULC (2000-2010) 

LULC Type 
Total Area 

 in 2000 

Total Area 

 in 2010 

Crop Land (Km2) 2004.8 1879.0 

Forest Land (Km2) 62.7 61.7 

Water (Km2) 91.1 209.5 

Bare Land (Km2) 430.9 397.4 

Urban Land (Km2) 221.96 264.04 

Table 4. Transition Matrix of LULC (2010-2020) 

LULC Type 
Total Area 

 in 2010 

Total Area 

 in 2020 

Crop Land (Km2) 1879.0 1583.3 

Forest Land (Km2) 61.7 11.6 

Water (Km2) 209.5 458.4 

Bare Land (Km2) 397.4 98.1 

Urban Land (Km2) 264.0 646.1 

Regarding the major land use/land cover (LULC) 

transitions, the evolution of urban land mostly happened at 

the expenditure of cropland, whereas the reduction in bare 

land primarily transitioned to water bodies and urban land. 

Between 2010 and 2020, the urban land and water bodies 

continued to expand, while bare land and forest land 

exhibited a decline. The decrease in bare land was mainly 

converted into urban land, with a smaller proportion 

transforming into cropland and water bodies. Additionally, 

some water bodies were converted into cropland, bare land, 

and urban land. A comparison of LULC changes from 

2000 to 2010 and from 2010 to 2020 reveals that, while the 

total areas of all LULC types experienced only slight 

changes during the first phase, a more rapid transformation 

occurred in the second phase. We concluded, that from 

2000 to 2020, the entire areas of urban land and water 

bodies progressively increased, whereas the total areas of 

cropland, forest land, and bare land declined significantly 

over the past two decades. 

3.4 Evolution of Land-Use Degree 

The rate of land use serves as an effective indicator of 

the extent and intensity of land utilization and growth. 

Utilizing the LULC information for the YRD, our research 

assesses various land categories and systematically 

calculates the evolution of land-use levels to quantify the 

general amount of land use (2000 – 2020). Figure 6, 

depicted the spatial dispersal of the evolution of land-use 

levels. The Land-use levels in the YRD (2000–2020) 

measures the intensity of human influence on land use 

patterns. 

 
(a). 2000-2010 
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(b). 2010-2020 

 
Figure 6. Spatial Dispersal Maps of Evolution of Land-use 

Degree in the YRD. (a). 2000-2010; (b). 2010-2020 

From 2000 to 2010 moderate land use intensity across 

much of the delta. This could be areas of mixed 

agricultural activity, perhaps interspersed with small 

settlements or less intensive industrial activities, while 

from 2010 to 2020 there's a noticeable increase in land 

degree change, especially along the southern coastline and 

the eastern part of the YRD suggesting an increase in high-

intensity land use such as urban expansion or industrial 

development. Using LULC data, the index captures the 

spatial dispersal of land use, from natural ecosystems to 

urbanized and industrial areas. Over the study period, 

noteworthy land use shifts occurred, from 2000 to 2010 

there was ambitious by development, and infrastructure 

development. Notably, there was a rise in construction 

land like built-up areas and also in ecological land like 

water-bodies, while natural environments, such as 

agricultural lands and bare lands faced varying levels of 

degradation. This analysis provides valuable insights into 

the region’s socio-economic and ecological dynamics, 

aiding in the development of sustainable land management 

strategies. 

3.5 Influence Analysis of Detection Factors 

The influence detector is utilized to evaluate the 

descriptive authority of numerous aspects influencing the 

geographical diversity of land-use strength within the 

research range. The outcomes are presented in Table 10, 

Table 11 and Table 12. The values of p for all discovery 

influences were zero, indicating the nominated influences 

exert a statistically noteworthy influence on the 

geographical variation of land-use strength. As a result, 

these factors can be regarded as key determinants in 

analyzing spatial diversity. The q-values further illustrate 

that higher q-values are associated with greater 

explanatory supremacy of each influence concerning 

spatial distinction of land-use strength. This suggests that 

factors with higher q-values have a more substantial 

influence on land-use strength patterns. As shown in Table 

10, Table 11, and Table 12, the q-values for soil type, 

aspect, and elevation exhibited a gradual decline from 

2000 to 2020, indicating a weakening influence of these 

factors over time. In disparity, the q-values for GDP, and 

population showed a significant increase, with relatively 

smaller changes observed for other factors. Overall, the q-

values for GDP, populace, temperature, and rainfall were 

notably higher, signifying that these factors have a strong 

explanatory power regarding LULC changes in the YRD. 

These factors are thus identified as the primary drivers of 

LULC variation in the district. In distinction, the q values 

of aspect and soil types were continually minor than 0.1, 

demonstrating that they have slight impression on LULC 

alteration in the YRD. In summary, the analysis reveals 

that population, GDP, temperature, and precipitation are 

the main drivers of land-use variation in the YRD, with 

elevation, slope, aspect, and soil playing more localized 

and secondary roles in shaping the region's land-use 

dynamics. The Geographic Detector’s findings suggest 

that socio-economic factors, particularly population 

density and economic development, have become 

increasingly dominant in influencing spatial 

differentiation in land-use strength over the past two eras. 

Table 10. The Values of Impact Factors Influencing Land-use 

Degree in (2000) 

Influence Factors 
2000 

q p Sequence 

S1 0.252 0 4 

S2 0.267 0 3 

N1 0.290 0 2 

N2 0.305 0 1 

N3 0.148 0 5 

N4 0.147 0 6 

N5 0.015 0 8 

N6 0.081 0 7 

Table 11. The Values of Impact Factors Influencing Land-use 

Degree in (2010) 

Influence Factors 
2010 

q p Sequence 

S1 0.442 0 1 

S2 0.438 0 2 

N1 0.240 0 3 

N2 0.193 0 4 

N3 0.104 0 5 

N4 0.103 0 6 

N5 0.012 0 8 

N6 0.038 0 7 

Table 12. The Values of Impact Factors Influencing Land-use 

Degree in (2020) 

Influence Factors 
2020 

q p Sequence 

S1 0.401 0 2 

S2 0.416 0 1 

N1 0.179 0 4 

N2 0.180 0 3 

N3 0.058 0 6 

N4 0.059 0 5 

N5 0.018 0 8 

N6 0.041 0 7 
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4. Conclusion 

This study, utilizing the GEE cloud framework, applied 

the RF technique to catalogue land use in the YRD and 

generated multi-temporal land use dispersal maps for the 

study area. A transfer matrix was then computed to assess 

land use variations, followed by the Geodetector method 

to investigate the potential driving mechanisms behind the 

LULC intensity in the region. The outcomes reveal that 

from 2000 to 2020, the dominant land use kinds in the 

YRD were built-up land, followed by cropland, water 

bodies, bare land, and forest land. Notably, cropland, forest 

land, and bare land experienced degradation, while urban 

land and water bodies expanded. Land use transition 

analysis showed that cropland and bare land were 

predominantly converted into urban land and water bodies. 

In terms of land use strength, high-intensity land use areas 

were mainly rigorous in the plains, with cropland and 

urban land being the primary land types. Furthermore, a 

single-factor detector analysis identified population 

growth, GDP, temperature, and precipitation as the 

primary factors driving land use variation. By examining 

the patterns of land use alteration and its influencing forces 

in the YRD, this study contributes to a deeper sympathetic 

of the district's land use dynamics and internal mechanisms. 

The findings provide valuable data for ecological 

governance and assist local governments in implementing 

strategies for rational regional preparation, as well as the 

synchronized, bearable growth of the social economy and 

atmosphere. 
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